
Mécanique des fluides
Section de génie civil

TD 5 - Correction

Exercices

Exercice 1 Une pompe installée sur une conduite aspire de l’eau à la base
d’un réservoir (hauteur d’eau h = 2 m) pour la refouler dans un bassin à
l’air libre dont la surface libre est située à une hauteur de htot = 10 m par
rapport au fond du reservoir. Le débit de la pompe est de 50 l/s. Calculer
la puissance de cette pompe
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Figure 1 – Schéma du système hydraulique de pompage

Exercice 2 Quelle est la pression qui s’exerce sur le nez d’une torpille se
déplaçant sous 10 m d’eau à la vitesse v = 50 km/h ?

Exercice 3 Une conduite circulaire de rayon R transporte un fluide de
masse volumique ϱ avec un débit Q. Tout d’abord horizontale, la conduite
subit une inflexion d’un angle α. Calculer la force subie par le coude en
considérant un volume de contrôle englobant ce coude. On négligera la
gravité.
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Exercice 4 Un jet circulaire de rayon a projette horizontalement un fluide
de masse volumique ϱ sur un mur vertical avec une vitesse v. Calculer la
force d’impact du jet.

Exercice 5 Vous travaillez pour Ingénieurs du Monde dans une vallée re-
culée des montagnes du Népal. Vous devez estimer la vitesse d’écoulement
de l’eau dans une rivière d’une petite vallée située à 5 jours de marche de la
route la plus proche avec les moyens rudimentaires à disposition sur place
(un récipient et un long tuyau). Connaissant le volume V du récipient et
le temps t nécessaire pour le remplir, déterminer la vitesse v de l’eau dans
la rivière. Vous connaissez encore le diamètre du tuyau d, sa longueur l, la
pression atmosphérique Pa, la pente de la rivière p. Les autres mesures déjà
prises sont indiquées sur la figure 2.
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Figure 2 – Schéma de l’installation rudimentaire de mesure.

Figure 3 – L’effet Magnus

Exercice 6 En 1997, Roberto CARLOS marqua un but d’anthologie face
à la France à faire pâlir les goals (voir si possible la vidéo sur internet).
Il utilisa pour cela un effet bien connu qui est l’effet Magnus. Cet effet
permet, en outre, de donner l’effet lifté ou coupé à une balle de ping pong
ou de tennis. Nous allons essayer de comprendre cet effet dans cet exercice.
Soit un ballon de rayon a, de masse m et de vitesse vballon. Pendant sa course
le ballon tourne sur lui même à la vitesse angulaire ω.

1. On suppose que la rotation du ballon entraine le fluide autour de lui.
Déterminez dans le référentiel du terrain, puis dans le référentiel
du ballon, la vitesse du fluide au point A et au point B (ces points
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étant très proches on pourra considérer qu’ils sont sur la surface du
ballon).

2. A l’aide du théorème de Bernoulli déterminez la différence de pres-
sion entre A et B.

3. En supposant que la pression A est homogène sur la demi-sphère
supérieure et la pression B homogène sur la demi-sphère inférieure,
déterminez la force résultante sur la ballon. Cette force est à l’origine
de l’effet Magnus.

4. En s’aidant du schéma ci-dessous trouver le rayon de courbure R
de la frappe que l’on considère constant. On négligera touts frot-
tements et on traitera le problème dans le plan horizontal (on ne
prend pas en compte le déplacement vertical du ballon). Aide : la
force centrifuge (Fc = mω2R) doit être égale à la force de Magnus pour
maintenir un rayon constant.

5. Considérons que Roberto Carlos a tiré le ballon de foot (de rayon
a = 11 cm et de masse m = 450 g) dans l’alignement du but à une
distance l = 35 m. La balle garde une vitesse constante de 130 km/h
pendant le vol et sa vitesse de rotation est de 6 tr/s (dans le sens
inverse des aiguilles du montre). On néglige les frottements. Sachant
que le ballon est tiré avec un angle de α = 12°, déterminer si le ballon
rentre dans les cages et si oui, à quelle distance D du centre des cages
(une cage de foot fait 7,3 m de large) ? Aide : comme R≫ l on pourra
considérer que la longueur de l’arc de la trajectoire du ballon est égale à
l.

Figure 4 – L’effet Magnus et Roberto vu du dessus
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Corrections

Exercice 1 On considère que le débit est conservé, la section dans le tuyau
reliant A à B étant constante cela donne vA = vB = v. La pression en B est la
pression atmosphérique patm. La pression en A est pA = ϱgh+patm. De plus
et zA = 0, et zB = htot. On ecrit maintenant la relation de Bernouilli au point
A et au point B.

ΨA =
ϱv2

A

2
+ ϱgzA + pA =

ϱv2

2
+ ϱgh+ patm,

ΨB =
ϱv2

B

2
+ ϱgzB + pB =

ϱv2

2
+ ϱghtot + patm.

Le long d’une ligne de courant Ψ doit se conserver or :

ΨB −ΨA = ϱg(htot − h).

Cela représente l’énergie qu’il faut fournir au système pour égaliser les po-
tentiels et maintenir l’écoulement. Ce terme est l’énergie par unité de vo-
lume fournie par la pompe au fluide et est noté e :

e = ϱg(htot − h).

Puisque l’on a un débit Q la puissance P à fournir pour maintenir cet ap-
port en energie au flux est :

P = Qe = 3924 W.

Exercice 2 On se place dans le référentiel de la torpille (car il faut se
placer dans référentiel tel que l’écoulement est stationnaire pour pouvoir
appliquer le théorème de Bernouilli). On considère une ligne de courant
horizontale entre le nez de la torpille (point A) et un point très éloigné (non
perturbé) en avant de celle-ci (point B). On écrit ensuite la loi de Bernouilli
entre ces deux points (on négligera la pression atmosphérique)

1
2
ϱv2

A + ϱgzA + pA =
1
2
ϱv2

B + ϱgzB + pB

Avec zA = zB, vA = 0 m/s, vB = −13,89 m/s (le signe négatif est du au fait
qu’on est dans le référenciel de la torpille) et pB = ϱgh Pa avec h = 10 m on
obtient
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pA = pB + ϱ

v2
B

2
−
v2
A

2

 = 194,55 kPa.

Figure 5 – Volume de contrôle

Exercice 3

n1 =
(
−1
0

)
, n2 =

(
cosα
sinα

)
,

v1 =
(
v
0

)
, v2 =

(
v cosα
v sinα

)
.

La conservation de masse s’écrit comme v1S1 = v2S2. Étant donné que S1 =
S2 = S on a donc v1 = v2 = v. On est en régime stationnaire, donc l’équation
d’Euler exprimée avec le théorème de transport dans le volume de contrôle
ci-dessus s’écrit comme∑

Fext =
∫
S
ϱv(v ·n) dS

=
∫
S1

ϱ

(
v
0

)[(
v
0

)
·
(
−1
0

)]
dS

+
∫
S2

ϱ

(
v cosα
v sinα

)[(
v cosα
v sinα

)
·
(

cosα
sinα

)]
dS

= Sϱ

(
−v2

0

)
+ Sϱv2

(
cosα
sinα

)
.

Les forces externes sont les forces appliquées par le coude sur l’écoulement.
Aussi on a S = πR2 et Q = vS et donc finalement

Fext =
Q2

πR2ϱ

(
1− cosα
−sinα

)
.
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Exercice 4 On se place dans une symétrie radiale pour le jet en consi-
dérant qu’après impact l’écoulement a une distribution de vitesses symé-
trique par rapport à l’axe du jet et nulles dans la direction x. Comme dans
l’exercice précédent on écrit l’équation d’Euler :

∫
S
ϱv(v ·n) dS =

∑
Fext

avec :

n1 =


−1
0
0

 , n2 =


1
0
0

 ,
v1 =


v
0
0

 , v2 =


0
b
c

 .
Qui donne :

∫
S
ϱ


v
0
0




v
0
0

 ·

−1
0
0


dS +

∫
S
ϱ


0
b
c





0
b
c

 ·


1
0
0


dS

= Sϱ


−v2

0
0

+ 0

= Fext .

Où S = πa2 donc

Fint = −Fext = πa2ϱ


v2

0
0

 .
Exercice 5 On va utiliser le théorème de Bernoulli sur une ligne de cou-
rant entre les deux extrémités du tuyau. On suppose que la vitesse d’entrée
est celle de la rivière, ce qui suppose de se placer ni trop près du tuyau
(perturbations de l’écoulement par le tuyau), ni trop loin (dissipation sur
le lit de la rivière non prise en compte). Bien sûr l’ensemble est à la pres-
sion atmosphérique. On utilise l’indice R pour indiquer la rivière et S pour
indiquer le seau.

ϱv2
R

2
+ ϱgzR + pR =

ϱv2
S

2
+ ϱgzS + pS .
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zR = −h1, zS = h2, pS = patm, pR = patm + ϱgh1, et t, le temps à remplir le
seau, est lié au débit par Q = V /t où V est la volume du seau, et la section
du tuyau, Stuyau = πd2/4. Donc

ϱv2
R

2
=
ϱv2

S

2
+ ϱgh2

⇒ v2
R = v2

S + 2gh2

=
(

Q
Stuyau

)2

+ 2gh2

=
( V

td2π/4

)2
+ 2gh2

⇒ vR =

√( 4V
td2π

)2
+ 2gh2.

Exercice 6

1. Dans le référentiel du terrain, le ballon fait tourner localement l’air
autour de lui. vA,t = ω ∗ a et vB,t = −ω ∗ a. Dans le référentiel du
ballon (en translation rectiligne par rapport au terrain, c’est à dire
sans rotation), tout se passe comme si l’air est animé de la vitesse du
ballon en sens opposé, vA,b = ωa− vballon et vB,b = −ωa− vballon.

2. On se place dans le référenciel du ballon car dans ce dernier l’écou-
lement est permanant. On va supposer zA = zB. D’après le théorème
de Bernoulli ce qui permet d’écrire

ϱv2
A,b

2
+ pA =

ϱv2
B,b

2
+ pB

d’où

pA−pB =
ϱ

2

(
v2
B,b − v

2
A,b

)
=
ϱ

2

(
(−ωa− vballon)2 − (ωa− vballon)2

)
=
ϱ

2
(4ωavballon) .

pA − pB est positif donc la balle va subir une force vers le bas sur le
schéma.

3. On intègre la force sur la surface de la sphère et on trouve que la
force exercé est la différence de pression fois l’aire du disque :

|| FMagnus ||= FMagnus = (pA − pB)πa2 = 2πϱωa3vballon.

7



4. On égalise la force centrifuge Fc = mRω2 = mv2
ballon/R avec la force

de Magnus FMagnus et on trouve l’expression du rayon :

R =
mv

2πϱωa3

5. Nous avons maintenant l’ensemble des données nécessaires pour
trouver la distance D. Il faut pour cela faire un peu de trigonomé-
trie. Sur la figure, ci-dessous, on a tracé la courbe de la trajectoire de
rayon R, dont la tangente en C fait un angle α avec AC. On trouve le
point B en traçant la perpendiculaire à AC, passant par A et coupant
l’arc, le point B correspond au point où la balle quitte le terrain. Le
triangle OBC est isocèle donc on a la relation

β + 2γ = π.

On observe que l’angle η = α + γ − π
2 . Le triangle ABC est rectangle

donc

tanη = D/l.

Donc

D = l tan(α − β/2).

Il faut encore déduire l’angle β, on utilise pour cela l’approximation
des petits angles on disant que l est approximativement égal à l’arc
entre B et C. Ainsi

β =
l
R
.

D’où

D = l tan(α − l
2R

).

Application numérique : D = 3,6 m donc le ballon rentre bien dans les
cages puisque elles font 7,3 m de large.
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Figure 6 – Resolution trigonométrique
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