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Mécanique des fluides

Section de génie civil
TD 5 - Correction

Exercices

Exercice1 Une pompe installée sur une conduite aspire de I’eau a la base
d’un réservoir (hauteur d’eau h = 2 m) pour la refouler dans un bassin a
l’air libre dont la surface libre est située a une hauteur de h;,; = 10 m par
rapport au fond du reservoir. Le débit de la pompe est de 50 1/s. Calculer
la puissance de cette pompe
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F1GURE 1 — Schéma du systeme hydraulique de pompage

Exercice 2 Quelle est la pression qui s’exerce sur le nez d’une torpille se
déplagant sous 10 m d’eau a la vitesse v = 50 km/h?

Exercice 3 Une conduite circulaire de rayon R transporte un fluide de
masse volumique p avec un débit Q. Tout d’abord horizontale, la conduite
subit une inflexion d’un angle «a. Calculer la force subie par le coude en
considérant un volume de contrdle englobant ce coude. On négligera la
gravité.



Exercice 4 Un jet circulaire de rayon a projette horizontalement un fluide
de masse volumique ¢ sur un mur vertical avec une vitesse v. Calculer la
force d’impact du jet.

Exercice 5 Vous travaillez pour Ingénieurs du Monde dans une vallée re-
culée des montagnes du Népal. Vous devez estimer la vitesse d’écoulement
de l’eau dans une riviere d’une petite vallée située a 5 jours de marche de la
route la plus proche avec les moyens rudimentaires a disposition sur place
(un récipient et un long tuyau). Connaissant le volume V du récipient et
le temps t nécessaire pour le remplir, déterminer la vitesse v de 1’eau dans
la riviere. Vous connaissez encore le diametre du tuyau d, sa longueur /, la
pression atmosphérique P,, la pente de la riviere p. Les autres mesures déja
prises sont indiquées sur la figure 2.
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FiGURE 2 — Schéma de 'installation rudimentaire de mesure.
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FiGure 3 — Leffet Magnus

Exercice 6 En 1997, Roberto CARLOS marqua un but d’anthologie face
a la France a faire palir les goals (voir si possible la vidéo sur internet).
Il utilisa pour cela un effet bien connu qui est 1’effet Magnus. Cet effet
permet, en outre, de donner l’effet lifté ou coupé a une balle de ping pong
ou de tennis. Nous allons essayer de comprendre cet effet dans cet exercice.
Soit un ballon de rayon a, de masse m et de vitesse vy,;,,. Pendant sa course
le ballon tourne sur lui méme a la vitesse angulaire w.

1. On suppose que la rotation du ballon entraine le fluide autour de lui.
Déterminez dans le référentiel du terrain, puis dans le référentiel
du ballon, la vitesse du fluide au point A et au point B (ces points



étant tres proches on pourra considérer qu’ils sont sur la surface du
ballon).

. Alaide du théoréme de Bernoulli déterminez la différence de pres-
sion entre A et B.

. En supposant que la pression A est homogene sur la demi-sphere
supérieure et la pression B homogéne sur la demi-sphere inférieure,
déterminez la force résultante sur la ballon. Cette force est a 'origine
de l'effet Magnus.

. En s’aidant du schéma ci-dessous trouver le rayon de courbure R
de la frappe que l'on considére constant. On négligera touts frot-
tements et on traitera le probleme dans le plan horizontal (on ne
prend pas en compte le déplacement vertical du ballon). Aide : la
force centrifuge (F, = mw?R) doit étre égale d la force de Magnus pour
maintenir un rayon constant.

. Considérons que Roberto Carlos a tiré le ballon de foot (de rayon
a =11 cm et de masse m = 450 g) dans l'alignement du but a une
distance / = 35 m. La balle garde une vitesse constante de 130 km/h
pendant le vol et sa vitesse de rotation est de 6 tr/s (dans le sens
inverse des aiguilles du montre). On néglige les frottements. Sachant
que le ballon est tiré avec un angle de a = 12°, déterminer si le ballon
rentre dans les cages et si oui, a quelle distance D du centre des cages
(une cage de foot fait 7,3 m de large)? Aide : comme R >> | on pourra
considérer que la longueur de I'arc de la trajectoire du ballon est égale a

FiGure 4 — L'effet Magnus et Roberto vu du dessus



Corrections

Exercice1 On considere que le débit est conservé, la section dans le tuyau
reliant A a B étant constante cela donne v4 = vg = v. La pression en B est la
pression atmosphérique p,;,,. La pression en A est py = pgh+ paim- De plus
et z4 =0, et zg = h;,;. On ecrit maintenant la relation de Bernouilli au point
A et au point B.

2 2
pv v
Wy = TA+0gZA+pA = 07+08h+17mmx
2 2
ov v
\I]B = TB +082p+PB= pT + pghtot + Patm-

Le long d’une ligne de courant W doit se conserver or :

Wp —Wp = 08(htor = ).

Cela représente I’énergie qu’il faut fournir au systeme pour égaliser les po-
tentiels et maintenir I’écoulement. Ce terme est 1’énergie par unité de vo-
lume fournie par la pompe au fluide et est noté e :

e=08(hit —h).

Puisque l'on a un débit Q la puissance P a fournir pour maintenir cet ap-
port en energie au flux est :

P =Qe=3924W.

Exercice 2 On se place dans le référentiel de la torpille (car il faut se
placer dans référentiel tel que ’écoulement est stationnaire pour pouvoir
appliquer le théoréme de Bernouilli). On considére une ligne de courant
horizontale entre le nez de la torpille (point A) et un point tres éloigné (non
perturbé) en avant de celle-ci (point B). On écrit ensuite la loi de Bernouilli
entre ces deux points (on négligera la pression atmosphérique)

1 1
501& +0824+pa = EWE +082p + 5

Avec zy4 = zg, v4 = 0 m/s, vg = —13,89 m/s (le signe négatif est du au fait
qu’on est dans le référenciel de la torpille) et pg = pgh Pa avec h =10 m on
obtient
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pA:pB+p( > " ]:194,55 kPa.
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Ficure 5 — Volume de controle
Exercice 3
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La conservation de masse s’écrit comme v;S; = v,S,. Etant donné que S; =
S, =S onadonc vy =v, =v. On est en régime stationnaire, donc I’équation
d’Euler exprimée avec le théoreme de transport dans le volume de controle
ci-dessus s’écrit comme

ZFext_Jpvvn)dS
Joelo e o) es
Jool e (v (e )]s
—sv( o )eser( e )

Les forces externes sont les forces appliquées par le coude sur 1’écoulement.
Aussion a S = wR? et Q = vS et donc finalement

Foy = mp



Exercice 4 On se place dans une symétrie radiale pour le jet en consi-
dérant qu’apres impact I’écoulement a une distribution de vitesses symé-
trique par rapport a I'axe du jet et nulles dans la direction x. Comme dans
I'exercice précédent on écrit I’équation d’Euler :
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Exercice 5 On va utiliser le théoreme de Bernoulli sur une ligne de cou-
rant entre les deux extrémités du tuyau. On suppose que la vitesse d’entrée
est celle de la riviere, ce qui suppose de se placer ni trop pres du tuyau
(perturbations de 1’écoulement par le tuyau), ni trop loin (dissipation sur
le lit de la riviére non prise en compte). Bien str ’ensemble est a la pres-
sion atmosphérique. On utilise I'indice R pour indiquer la riviere et S pour
indiquer le seau.

2 2
ov ov
" +082R+ PR = —25 + 0825 + Ps.



zr = —hy, 25 = hy, Ps = Patm» PR = Patm + 0¢h1, et t, le temps a remplir le
seau, est lié au débit par Q = V/t ou V est la volume du seau, et la section
du tuyau, Stypay = nd?/4. Donc

2 2
OVR _ 0%
= vj = vi +2gh,
2
:( Q ) +2gh2
tuyau
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=|— 2¢h
(tdzn/4) o8
4V \?
= VR = (_tdz’]'() +2gl’l2.

Exercice 6

1. Dans le référentiel du terrain, le ballon fait tourner localement l’air
autour de lui. v4; = w=*a et vg; = —w * a. Dans le référentiel du
ballon (en translation rectiligne par rapport au terrain, c’est a dire
sans rotation), tout se passe comme si l’air est animé de la vitesse du
ballon en sens opposé, v4 ;, = wa —Vygyin €t Vpp = —a = Vpyg1ion-

2. On se place dans le référenciel du ballon car dans ce dernier 1’écou-
lement est permanant. On va supposer z,4 = zg. D’apreés le théoreme
de Bernoulli ce qui permet d’écrire

pvfw B v2
B Pa 2 +PB

N

d’ou

PA—PB = g(vl?é,b - vfl,b) = g ((—wa - Vbullon)z —(wa - Vballon)z) = g (dwavyaion)-

pa — pp est positif donc la balle va subir une force vers le bas sur le
schéma.

3. On integre la force sur la surface de la sphére et on trouve que la
force exercé est la différence de pression fois l’aire du disque :

2
I FMugnus ll= FMagnus =(pa—pp)ma” = 27pra3vballon-



4. On égalise la force centrifuge F. = mRw? = mvﬁallon/R avec la force
de Magnus Fpjggp,s €t on trouve ’expression du rayon :

Ro MV
2npwa’d

5. Nous avons maintenant ’ensemble des données nécessaires pour
trouver la distance D. Il faut pour cela faire un peu de trigonomé-
trie. Sur la figure, ci-dessous, on a tracé la courbe de la trajectoire de
rayon R, dont la tangente en C fait un angle @ avec AC. On trouve le
point B en tragant la perpendiculaire a AC, passant par A et coupant
l'arc, le point B correspond au point ou la balle quitte le terrain. Le
triangle OBC est isocele donc on a la relation

p+2y=m.
On observe que I'angle 7 = @ + y — 5. Le triangle ABC est rectangle
donc

tany = D/I.
Donc

D =Itan(a — p/2).

I1 faut encore déduire I’angle g, on utilise pour cela I'approximation
des petits angles on disant que | est approximativement égal a I’arc
entre B et C. Ainsi

=
[l
)~

D’ou

l
D= -—).
[tan(a 2R)

Application numérique : D = 3,6 m donc le ballon rentre bien dans les
cages puisque elles font 7,3 m de large.
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FIGURE 6 — Resolution trigonométrique



